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Abstract
Human motion prediction is a fundamental problem in understanding human
natural movements. This task is very challenging due to the complex human
body constraints and diversity of action types. Due to the human body being a
natural graph, graph convolutional network (GCN)-based models perform better
than the traditional recurrent neural network (RNN)-based models on model-
ing the natural spatial and temporal dependencies lying in the motion data. In
this paper, we develop the GCN-based models further by adding densely con-
nected links to increase their feature utilizations and address oversmoothing
problem. More specifically, the GCN block is used to learn the spatial relation-
ships between the nodes and each feature map of the GCN block propagates
directly to every following block as input rather than residual linked. In this way,
the spatial dependency of human motion data is exploited more sufficiently and
the features of different level of scale are fused more efficiently. Extensive exper-
iments demonstrate our model achieving the state-of-the-art results on CMU
dataset.
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1 INTRODUCTION

Forecasting the future movements of human actions is a crucial topic in computer vision and computer graphics for
its various practical applications in real life, such as surveillance,1 pedestrian tracking,2-4 interactive robotics,5-7 and
autonomous driving systems.8 The data of human motions are usually captured by the Mocap system and represented
in the format of the three-dimensional (3D) skeleton. In this paper, we address the problem of generating human action
movements in the 3D skeleton format.

There were a lot of researchers attempting to propose various approaches for motion prediction. Most deep learning
models treat motion prediction similar to machine translation problems and employ long short-term memory (LSTM)-
or convolutional neural network (CNN)-based models.9-16 However, different from machine translation, motion data
has special human body constraints and is actually a spatial-temporal data rather than temporal data. The LSTMs are
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majorly designed for temporal data and they are not sufficient for capturing the dependency between joints on the human
body. Several existing works17,18 consider that the special hierarchical structure of the human body can enhance the
performance to capture spatial information.

Recently, Graph Neural Networks (GNN) attracts increasing attention and achieved a significant margin of improve-
ment on human motion tasks.19-21 The reason is the human body is a natural graph structure, that is, the joints are nodes
of the graph and connectivity is defined by the limbs. The GCN-based work21 significantly outperforms those of the LSTM
or CNN-based models for motion prediction. However, the existing GCN-based models are limited on feature utilization
and under research as an emerging topic. When the GCN layers go deeper, the gradient is prone to vanish. Moreover,
the features extracted from earlier layers contain the different scales of graph information. The GCN layers usually have
a receptive field with size 1, that is, only operating on the 1-nearest node. However, the impact of the 1-nearest feature
will diminish when the layers go deeper. On the contrary, the nearest joints on the human body are vitally important for
prediction movement.

To address these limitations in a simple but effective way, we propose an advanced GCN based framework for motion
prediction which connects all the GCN blocks directly. Therefore, the output feature of each GCN block skips the middle
layers and jumps to the final layers. In details, our model formulates the graph as the 3D skeleton of the human body.
Then the trajectory of each joint is encoded and fed as node input features. Each GCN block consists of two GCN layers
and LeakyRELU layers. The first layer is used to preserve the feature map size. Similar to Reference 22, we concatenate
the different scale of features. Therefore, if our model has N GCN blocks, and the first GCN block has an output feature
with size C, then the input features for the last GCN blocks will have size C × (N − 1) and N(N + 1)/2 links between blocks
are built in our model.

Compared to the aforementioned GCN model,21 our model requires almost the same level of parameters. But it signif-
icantly enlarged the feature maps utilization and increase the impact of earlier layers’ feature map. Moreover, this densely
connected structure makes the model for motion prediction easier to train and able to go deeper. Another important fac-
tor decreasing the performance of motion prediction is that the models are prone to be overfitting due to the motion
data amount being small. However, our model has a regularizing effect and LeakyRELU layers reduce the overfitting on
training.

In conclusion, our contribution in this paper are: We proposed a new Densely GCN-based model to address the
problem of motion prediction. It reuses the multi-scale feature maps from every block to enlarge the receptive field and
reduce overfitting problem. We conduct extensive comparison experiments on the standard benchmarks for motion pre-
diction, which are Human3.6M, and the CMU motion capture dataset. The model is evaluated from both the angle and
3D position aspects, and it surpasses the state-of-the-art performance on CMU dataset.

2 RELATED WORK

2.1 Motion prediction

The mainstream of the existing deep learning models for motion prediction can be categorized as RNN-based, fully
convolutional network (FCN)-based and CNN-based. In the early research, Fragkiadaki et al.9 proposed a recur-
rent based Encoder-Recurrent Decoder model to address this problem. Following this trend, researchers put effort
into designing various recurrent based models for this problem. Jain et al.23 investigated the spatial-temporal struc-
ture of motion data and introduced the Structural-RNN model, which forms a spatial-temporal graph that trains
a RNN on each node. Furthermore, inspired by the success of Seq2Seq model on machine translation, Martinez
et al.12 proposed a sequence to sequence model for motion prediction. They surprisingly find a simple zero-velocity
baseline which outperforms all the existing complex models. All of the aforementioned strategies face a disconti-
nuity problem and mean pose problem. To address the limitations, Gui et al.11 built an adversarial model to dis-
tinguish the synthesised sequences and the real ones so that the performance of prediction can be lifted. Aside
from these RNN-based models, researchers also attempt to solve the problem from other aspects. Instead of train-
ing the motion in angle space, Butepage et al.17 proposed a new FCN-based model with three types of bottlenecks
and learned the movements directly in the format of 3D positions. However, FCN-based models are easily overfit-
ting and insufficient to capture the relationships between different body parts. To overcome this, Li et al.16 designed
a convolutional sequence to sequence model which used a long term and short term encoder to extract deep
features.
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2.2 Graph neural network

Recently, researches concerning Graph Neural Networks have become increasingly active because of their superior abil-
ity to tackle irregular shaped data. Convolutional operations on the graphs have been investigated as well. The human
body can be regarded as a natural graph, therefore recent approaches achieved distinctive success by introducing GCN
for skeleton-related problems. A spatial-temporal graph19 is introduced to address the motion classification problems and
gains a considerable improvement. Furthermore, Li et al.20 considered more relationship edges between human joints
and enhanced the classification accuracy. In contrast to the undirect graph used for the skeletons, Shi et al.24 introduced
direct graph for the human body to exploit the dependencies between bones and joints. Zhao et al.25 designed a SemGCN
operation for 3D human pose regression. For motion prediction, Mao et al.21 firstly proposed a GCN-based approach,
which predicts the future sequences within the trajectory space instead of the pose space and outperformed all the exist-
ing RNN-, FCN-, and CNN-based approaches. To investigate further on the GCN-based model for motion prediction, we
constructed a densely connected GCN-based model for motion prediction in this paper. Compared to the work of Ref-
erence 21, our model is more effective on learning feature maps and it is less likely to overfit and experience gradient
vanishing problems.

3 METHODOLOGY

In this section, we give out the details of our methodology to address the motion prediction problem. Firstly, the mathe-
matic formulation of the motion prediction problem is described. Then the definition of our model’s graph networks is
depicted. After that, we show the structure of our networks and how it has been densely connected. The whole pipeline
is shown in Figure 1.

3.1 Problem formulation

In this section, we provide the mathematic formulation of the motion prediction problem. Assuming that the sequence of
the 3D skeleton is X1:T = [x1, x2, … , xt, … , xT], t is the time step ranges from 1 to T so that xt is the related pose at time t.
Every pose xt contains K joints and each joint can be represented as a 3D position (x, y, z) or orientations (𝛼, 𝛾, 𝛽) (the
data usually removes the global rotation and translation). Therefore, we denote xt ∈ R3×K . This task aims to predict the
future sequences XT + 1:T′ . T′ is the final frame. The ground truth future sequences are denoted as GXT + 1:T′ and the syn-
thesized sequences from the model are denoted as SXT + 1:T′ . Therefore, the objective of the problem is to minimize the
error of ||GXT + 1:T′ − SXT + 1:T′ || and also make the SXT + 1:T′ looks plausible like the real human actions as well. Most of the
traditional methods predict the future sequences by generating poses recursively. However, this type of method suffers
from large error accumulation. For example, if the generated xt′ has an error, the next pose xt′ + 1 is generated based on the
information of xt′ , so it will accumulate the error as well. Therefore, we follow the recent approach,21 predict the future
sequences in the trajectory space, and generate the whole trajectory of each joint at once. Moreover, a padding strategy is
employed to predict the residue of the sequences rather than the absolute value of the sequences because zero-velocity12 is
proved to have better performance. Specifically, we obtain a padding sequence by repeating the last pose xT in the sequence
(T′ −T) times, which can be written as PT + 1:T′ = [xT , … , xT , … , xT]. The input sequences for our model are the concate-
nation of X1:T and PT + 1:T′ , which is denoted as Input1:T′ = [x1, x2, … , xT , … , xT]. The target sequences of our model are
the concatenation of X1:T and GXT + 1:T′ , which can be denoted as Target1:T′ = [x1, x2, … , xT , … , xT′]= [X1:T ;GXT + 1:T′].

F I G U R E 1 The overview of our
model. Dense link shows how the
feature maps propagate. Each GCN
block shows the input of each node of
the graph is the Discrete Cosine
Transform of the trajectory
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Therefore, our model is designed to take the Input1:T′ and produce a synthesis sequence Output1:T′ . Then the objective
function of our model measures the error between Output1:T′ and Target1:T′ .

3.2 Graph neural networks

In our approach, we proposed a GCN-based model to predict future movements in the trajectory space. As the afore-
mentioned denotations, a human pose contains K joints and every joint is represented as 3D position or Euler Rotation
Angle.

3.2.1 Graph formulation

The human body is of a natural graph structure. Graph Neural Network-based methods achieved remarkable success on a
lot of human pose related tasks in recent years because of their ability to exploit the implicit dependencies between joints.
Therefore, we form our graph model intuitively. Recalling that the human pose has K joints and the graph is defined
as G= (V , E). Here the node-set V contains K joints {J0, J1, … , JK} and the edge set E contains the graph edges which
correspond to the limbs on the human skeleton. Usually, the adjacent matrix of our graph G is denoted as A. In the matrix
A, element aij on ith row jth column has the value 1 if and only if V i and V j are connected on this graph or i= j. In the
experiment, we use this model to predict the graph connectivity, in other word, the edge set E is obtained from training
rather than predefined. Moreover, we treat every joint as three nodes on the graph for they have the position ⟨x,y,z⟩. So
our node set V is actually {J0x, J0y, J0z, J1x, J1y, J1z, … , JKx, JKy, JKz} for practical use.

In our model, the input feature Fix for node Jix is obtained from the trajectory data of Jix from time period 1 to T′. It
is a one-dimensional continuous function. Following Reference 21, we transform this trajectory into a series of Discrete
Cosine Transform (DCT) representations which are compact in the space to benefit the training. The DCT method uses
cosine trajectories as a basis to represent the original trajectory. Any continuous trajectory can be represented by a series
of the linear combinations of these bases uniquely. Therefore, every trajectory can be represented by the DCT representa-
tion’s coefficients. In other words, the input feature Fix of our Graph model is the DCT method’s coefficients. The Graph
model will output a feature F′

ix, which is the DCT coefficients as well. Then the F′
ix will be transformed back to the trajec-

tory by the linear combination of the basis. Therefore, the Graph model takes in the trajectory information for every joint
and then produces the output trajectory for every joint. As evident in the literature and experiments, predicting the resid-
ual data rather than the exact data will greatly reduce the gradient vanishing and gradient explosion problem, therefore,
achieving better performance. We use the coefficients Fix + F′

ix as the final results and then use it to reconstruct the output
trajectory. Therefore, we not only predict the future movements from time T + 1 to T′ but also reconstruct the movements
from time 1 to T. The part of the generated sequence from 1 to T can be used as an identity regularizer to guide the model
training. In the next section, we will give out the layers used in obtaining output features F′ from the input features F.

3.2.2 Graph convolutional layers

There have been various kinds of convolutional layers introduced for graph data. Here, we adopt the graph convolutional
layer26 designed in the spectrum perspective.

The graph convolutional layer is designed based on the idea that the convolutional operation of the two sig-
nals x and g is actually the dot product of them in the Fourier domain. The following formulation can be
formed.

x ∗ g = F−1(F(x)⊙ F(g)), (1)

where x stands for the input signal to the graph and g is the convolutional kernel signal, respectively. F is the Fourier
transformation function to project the signal on the graph to their Fourier domain. Due to the existing knowledge, Fourier
transforms F(x) on the graph can be written as UTx, where U is a matrix obtained from the Laplacian matrix of the graph.
Every row of U is the eigenvector of the Laplacian matrix L= I −D−1/2AD−1/2 which can be formulated as L = UΛUT .
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Therefore, the Equation (1) can be rewritten as:

x ∗ g = U(UTx ⊙ UTg) = Ug𝜃UTx. (2)

Here, g𝜃 is the convolutional function operates on Λ. The Chebyshev polynomials are introduced to approximate g𝜃 .
If only the first order of Chebyshev polynomials are considered, the equations can be written as:

x ∗ g =
1∑

k=0
𝛽kTkLx. (3)

Tk is the kth order of Chebyshev polynomials. Finally, we assume the input feature of lth GCN layer is Fl ∈ RK ×C

(C is the channel number of the input features) and the output feature is Fl+ 1 ∈ RK ×C′ . The trainable parameters of the
neural network is denoted as W ∈ RC ×C′ , the matrix related to the Lapalian Matrix of graph is denoted as Z̃ ∈ RK×K , then
the convolutional operation can be drived out:

Fl+1 = 𝜎(Z̃lFlW). (4)

𝜎 is an activation function. We used the LeakRELU() as function 𝜎 here rather than Tanh() used in previous work.21 In
our experiment, Z̃ is setting trainable to improve the performance because it can reduce overfitting.

3.3 The densely connected network structure

After we explained our problem formulation and layer operations, we will describe the network architecture in our work,
which is our main contribution. The input feature for the model is F, then it will pass through N GCN blocks and generate
the final output feature FN .

Residual GCN blocks. Each GCN block contains two GCN layers and every GCN layer will append a BatchNorm
layer, a LeakRELU layer and a Dropout layer. Inside every GCN block, we estimate the residual part of features as well.
Then the procedure passing through the lth GCN layer can be formulated as:

Fl+1 = GCN(Fl) + Fl. (5)

Densely connection. In the previous work,21 the output of each GCN block is directly feed into the next block. We
believe that approach does not exploit the feature maps of each layer sufficiently. For example, the first layer offers feature
maps obtained by operating convolution on the 1-nearest node. Then the next feature map has a receptive field 2 because
every node feature contains the 2-nearest information. The key idea is to produce a more informative input feature by
fusing multiscale feature maps with a different size of the receptive field. Instead of feeding Fl feature maps for the lth
block, we try to feed all the feature maps F0, F1, … , Fl into the lth block to enlarge the ability of layers to exploit the
hidden dependencies between joints in a different levels.

Therefore, we reconstruct the network structure by adding dense links on the network to increase its ability. Firstly,
our GCN blocks do not have residual links anymore, because the input feature size is not matching the output feature
size anymore.

Assuming the input feature map F0 of the model has feature size C, then the output feature map of lth GCN block
has size C as well. The input feature map for lth GCN block is actually not the same anymore, but the concatenation of
the output feature of all the previous GCN blocks. Therefore, the input size of lth GCN block is l×C. Consequently, the
formulation of the lth GCN block can be described as:

Fl+1 = GCN([F0,F1, … ,Fl]). (6)

Compared to Huang et al.,22 this is the first time dense structure-based GCN network is proposed for the motion
prediction task. In this way, the feature maps of each layer contribute more significantly to the final results since the final
layer is getting backpropagation directly to all the other GCN blocks. Therefore, it is less likely to get a gradient vanishing
and gradient explosion problem as well.
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Another significant advantage of this kind of structure compared to Residual GCN blocks is that the residual GCN
block requires size matching but the dense structure not. For example, we can actually set the channel size of every output
feature map Fl differently. Assuming their channel sizes are C0, C1, C2, … , CN , then the input feature of lth GCN block
has feature size

∑l
k=0 Ck. The benefit of that is we can use the same size of parameters but actually design a much deeper

network. For a special case, we can set C1, C2, … , CN the same size but narrower than C0, such as half of C0. Then the
network can have twice the deeper layers than before and keep the model size at the same level. Meanwhile, the more
narrow middle layers also help to reduce the overfitting problem.

4 EXPERIMENTS

For evaluations, we empirically demonstrate our proposed models’ effectiveness on the widely used benchmark
Human3.6M27 and CMU-Mocap1. Comprehensive experiments have been carried out to validate the superior ability of
our model. The error results are reported both in the aspect of Euler Angles and 3D coordinates. The comparison results to
the state-of-the-art work including RNN-based model random recurrent neural networks (RRNN),12 CNN-based model
convSeq2Seq,16 and GCN-based model LearnTraj21 are reported. In the end, we conduct ablation evaluations to investigate
the impact of the proposed strategy.

4.1 Implementation details

For a fair comparison, we follow the same set of other prior works.21 The input feature size of the model is 15 and every
GCN layer output a hidden feature with size 256. Every GCN block contain 2 GCN layers and 12 GCN blocks employed
in total. The dropout rate of each layer is set to be 0.5. The learning rate is 0.0005 and batch size is 16. An adam optimizer
is used for training and the results are trained after 50 epochs. The whole framework is implemented in PyTorch and
trained on an NVIDIA GeForce GTX 1080 Ti with 11GB memory. The approximate training hour is 50 hours.

4.2 Datasets

Human3.6M: Almost all of the existing motion prediction models are evaluated on the benchmark Human3.6M
since it provides the largest amount of human poses. Following the typical settings,12,16,21 15 actions performed by six
actors are selected for our experiment from Human3.6M(H3.6M). Three kinds of format are provided by H3.6M. Here
we used the 3D skeleton format with 32 joints to represent the human structure. The global rotation and translations are
removed and all sequences are downsampled to 25 HZ. The trials from five actors are used as training dataset and the rest
trials of one actor are used as testing dataset.

CMU-Mocap: This dataset is firstly introduced for motion prediction evaluation by Li et al..16 It contains a wider range
of action types than H3.6M. Similar to H3.6M, we remove the global rotations and translations as well and normalize it.
In total, eight actions (such as basketball, soccer, jumping and etc.) are selected under the prescriptions.16 Every action
set contains more than five trials. For our experiments, we use the same dataset splitting strategy like Li et al.16

4.3 Evaluation baselines and metrics

Baselines. The existing approaches for motion prediction can be broadly categorized as RNN-, CNN-, and GCN-based
methods. We select the models with the best performance and public codes so far in these three domains accordingly,
which are RRNN,12 convSeq2Seq,16 and LearnTraj.21 For the errors reported directly in the Euler angle space and 3D
coordinates, we quote their results directly from papers. For the visualization comparison, we only compare our method to
LearnTraj21 and obtain the results from the public code2. We trained our model both in 3D position and orientations space.

Metrics. Two kinds of evaluation protocols are used in the experiments. Firstly, the traditional Euler angle error12,16,21

which represents the input and prediction data in the Euler angle space and measures their Euclidean distance. However,
some researchers find this kind of loss incapable to completely reflect the visual similarity— the zero-velocity baseline

1http://mocap.cs.cmu.edu/
2https://github.com/wei-mao-2019/LearnTrajDep
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has a smaller error but looks different at visual aspect. Therefore, another Mean Per Joint Position Error (MPJPE)27 is
used as an evaluation metric in this work as well. This error calculates the displacement between the groundtruth and
predicted sequences from the 3D coordinates representation.

4.4 Results

In this section, we report our performance in the given tables. The results of short-term (80, 160, 320, 400 ms) prediction
of each dataset are given out.

Human3.6M Typically, walking, eating and smoking, and discussion actions are most widely evaluated as they are
basic and ubiquitous in daily life. Firstly, we show the results of these four types of actions in Table 1. Four baseline

T A B L E 1 The short-term prediction error of four action types on H3.6M dataset

Walking Eating Smoking Discussion

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN12 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09

CNNHD16 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

LearnTraj21 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85

Ours 0.20 0.32 0.54 0.61 0.18 0.32 0.54 0.66 0.22 0.41 0.87 0.83 0.22 0.59 0.92 1.00

LearnTraj(3D) 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1

Ours(3D) 8.4 15.3 28.3 33.2 8.6 18.2 38.3 46.5 6.9 13.4 24.2 29.0 10.1 23.3 43.0 49.6

T A B L E 2 The short-term prediction error of 12 action types on H3.6M dataset

Directions Greeting Phoning Posing

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48

CNNHD 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37

LearnTraj 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24

Ours 0.38 0.80 1.35 1.49 0.37 0.65 1.10 1.30 0.57 1.04 1.46 1.59 0.39 1.03 1.87 2.19

LearnTraj(3D) 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9

Ours(3D) 12.9 24.2 57.0 72.4 14.0 29.8 71.9 87.4 11.3 19.1 35.8 40.4 8.0 22.8 65.5 82.1

Purchases Sitting Sittingdown Takingphoto

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05

CNNHD 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06

LearnTraj 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70

Ours 0.60 1.24 1.84 2.00 0.29 0.49 0.86 1.05 0.32 0.67 0.97 1.07 0.15 0.36 0.59 0.71

LearnTraj(3D) 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6

Ours(3D) 21.6 40.5 67.1 78.0 10.7 25.0 53.2 66.6 10.5 23.0 51.8 65.6 6.8 15.6 40.7 52.9

Waiting Walkingdog Walkingtogether Average

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15

CNNHD 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

LearnTraj 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95

Ours 0.22 0.48 0.90 1.12 0.67 1.03 1.95 2.32 0.15 0.32 0.52 0.60 0.33 0.65 1.09 1.24

LearnTraj(3D) 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3

Ours(3D) 9.5 22.3 59.6 76.6 22.8 48.3 95.8 116.3 8.3 18.2 34.2 43.1 11.36 23.93 51.1 62.7
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T A B L E 3 The short-term prediction error of eight action types on the CMU dataset

Basketball Basketball signal Directing traffic Jumping

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LearnTraj21 0.33 0.52 0.89 1.06 0.11 0.20 0.41 0.53 0.15 0.32 0.52 0.60 0.31 0.49 1.23 1.39

Ours 0.31 0.49 0.85 1.04 0.09 0.16 0.34 0.44 0.17 0.33 0.50 0.60 0.33 0.70 1.74 1.63

LearnTraj(3D)21 14.0 25.4 49.6 61.4 3.5 6.1 11.7 15.2 7.4 15.1 31.7 42.2 16.9 34.4 76.3 96.8

Ours(3D) 10.5 19.0 38.9 49.0 2.3 4.4 10.1 13.9 6.0 12.4 30.1 38.8 12.0 27.0 70.7 94.6

Running Soccer Walking Washwindow

Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LearnTraj21 0.33 0.55 0.73 0.74 0.18 0.29 0.61 0.71 0.33 0.45 0.49 0.53 0.22 0.33 0.57 0.75

Ours 0.24 0.35 0.43 0.49 0.16 0.30 0.70 0.84 0.30 0.40 0.38 0.45 0.21 0.29 0.60 0.78

LearnTraj(3D)21 25.5 36.7 39.3 39.9 11.3 21.5 44.2 55.8 7.7 11.8 19.4 23.1 5.9 11.9 30.3 40.0

Ours(3D) 20.5 32.3 49.5 54.7 9.8 21.9 49.1 63.2 5.7 10.2 18.4 21.1 4.9 10.1 27.9 37.2

Milliseconds 80 160 320 400

LearnTraj 0.25 0.39 0.68 0.79

Ours 0.23 0.38 0.69 0.78

LearnTraj(3D) 11.53 20.36 37.81 46.80

Ours(3D) 8.96 17.16 36.84 46.56

T A B L E 4 The average error of all types of actions in the CMU
dataset

performances in the Euler Angle spaces is given out in this table. However, it has been found out that the Euler Angle
error does not reflect the similarity visually.21 So we train the model in 3D coordinate space and report their comparison
results. LearnTraj achieved the smallest error in terms of 3D errors compared to the existing trending work. However,
it can be seen from Table1 that our model surpasses it with a gap on serval actions as well. Moreover, the results of the
rest 12 types of actions are reported in Table 2. Our methods outperform LearnTraj on majority of the action types in 3D
coordinate spaces which demonstrates the effectiveness of our method.

CMU-Mocap: Similarly to H3.6M, the short-term results of the CMU-Mocap dataset are shown in Table 3 and 4.
Firstly, the Euler Angle error and 3D error of eight actions are shown in Table 3. More than 80 % of the errors are smaller
after using our method, except for Jumping and Soccer. This might happen because of the unbalance of the dataset, i.e.
some actions achieve their best value while other action may get overfitting. To investigate further, we report the average
values of different time intervals. Table 4 demonstrates that our method achieved the state-of-the-art performance for the
CMU-mocap dataset which volidate the effectiveness of our model.

5 CONCLUSION

In this paper, we firstly introduced a densely connected GCN-based model for motion prediction task which enhance the
feature maps utilization and reduced the overfitting problem. Experiments on heavily benchmarked databases validate the
effectiveness of our model. The performance of 3D joints representation is better than the representation in angle space.
The performance on CMU dataset is much better than on H3.6M datasets. Our methods beat down the state-of-the-art
methodologies, therefore, shows the dense strategy is useful.
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