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Abstract. Cross-modal music retrieval is still a challenging task for
current search engines. Existing search engines conduct music tracks
matching via coarse-granularity retrieval of metadata, such as natu-
ral language queries including pre-defined tags and genres. However,
such retrieval methods often encounter difficulties while handling fine-
granularity queries on contexts. We aim to address fine-granularity music
retrieval issue in this work. We construct a dataset with 66,048 image-
music pairs for cross-modal music retrieval task. A modality-joint em-
bedding space is learned, where hybrid-granularity context-alignment
between images and music is considered via contrastive learning. Ad-
ditionally, contrastive learning losses on hybrid-granularity contexts are
designed to ensure image-music alignment in both inter-modal and intra-
modal scenarios. The proposed approach is evaluated through experi-
ments, which demonstrate that our method successfully aligns images
and music, and outperforms previous methods in terms of cross-modal
music retrieval tasks (image-to-music and music-to-image).Codes3 will
be available for public.

Keywords: Multimodal Learning · Cross-Modal Retrieval · Contrastive
Learning · Image-Music Alignment.

1 Introduction

Large-scale music websites, such as SoundCloud4 and Audiomack5, facilitate
search engines based on cross-modal retrieval methods, which fetches music
tracks by matching their metadata (e.g., song titles, artists’ names, and mu-
sic genres) with natural language queries. Though some offer more personalized
query options (i.e., mood and theme), these retrieval methods still often fail to
find soundtracks with implicit context aligned with films and their derivative
works. And this is critical for creators to choose appropriate soundtracks.

Researchers dedicate to improve the cross-modal music retrieval systems.
Manco et al. [21] and Doh et al. [7] make the attempts to bridge audio and
3 https://blossomers.github.io/
4 https://soundcloud.com/
5 https://audiomack.com/
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Fig. 1: An example that shows retrieval between image and music in searching
engine.

text in music domain by learning a multimodal embedding to facilitate text-
based music retrieval task on both tag-level and sentence-level. However, the
increasing need to find soundtracks based on contexts is not yet considered,
as such text-based music retrieval methods mainly focus on the metadata but
not the contexts. To meet these needs, video-based music retrieval methods are
developed recently. Yi et al [32] and Cheng et al. [2] propose micro-video based
music retrieval systems from perspectives of cross-modal generation mechanism
and labels noises reduction in datasets, respectively. These micro-videos (less
than 10 seconds) usually display consecutive frames in a similar scene, which
can be effectively compressed to one single key frame. Thus such video-based
music retrieval can be simplified to image-base music retrieval.

Image-music retrieval has addressed lots of attention, since the images ex-
press the context information more effectively than text-based ones while holding
retrieval efficiency than video-based approaches. In addition, image-based mu-
sic retrieval are more preferred by users than text-based ones in terms of user
experience and usability [25]. Nakatsuka et al. [24] utilize contrastive learning
technique to learn a joint embedding space to align images and music based
on the music genres and their cover art. Stewart et al. [27] further propose a
cross-modal version of SupCon loss to better align images and music on emotion
labels.

Aforementioned image-music retrieval methods are able to handle coarse-
granularity retrieval as they align images and music based on explicit informa-
tion like image classes and emotions. However, such methods probably match
music with context unrelated images. As shown in the left of Fig 2, a music clip
about happiness moment of couples is matched with an image of a dog smiling
(same tender emotion), and an epic music clip of films is matched with images of
team gathering as they share content-similarity with superheros gathering. We
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Fig. 2: Prior image-based music retrieval methods [24, 27] will mismatch music
and images with unrelated contexts. The proposed MIPNet dataset contains
over 66k image-music pairs, which share similar contexts, aligning with general
human intuition.

refer these retrieval tasks on context information contained implicitly in queries
as fine-granularity retrieval, which are not considered by methods [24,27].

To achieve such fine-granularity retrieval, this work leverages a cross-modal
version of Barlow Twins loss [34] to capture the implicit context information.
Then we combine it with coarse-granularity retrieval to form a framework HG-
CLIM for Hybrid-Granularity Context Alignment Contrastive Cearning between
Images and Music. It is capable of capturing context information in a hybrid
manner. To conduct context-alignment on both coarse-granularity and fine-
granularity, we construct a dataset consists of 66,048 image-music pairs, where
both coarse-granularity (including the explicit contents in images, beats and
rhythm with emotions in music) and fine-granularity (including the implicit con-
text connections between images and music) are considered. As shown in Fig 2,
music clips with slow beat tunes and emotional rhythm are paired with im-
ages containing raining weather, desolation landscapes and cold colors. Further-
more, to align these hybrid context information effectively, we propose hybrid-
granularity contrastive learning losses for both inter-modal and intra-modal sce-
narios. Our work follows the modality-symmetric feature as [27] that is capable
of image-to-music and music-to-image retrieval. The key contributions are sum-
marised as follows:

– To the best of our knowledge, HG-CLIM is the first framework that performs
image-music retrieval on queries about contexts which learns a hybrid con-
text alignment between two modalities, which could benefit current metadata
based music searching paradigm.

– To address the lack of datasets in the area of image-based music retrieval, we
construct a private dataset termed MIPNet. It contains 66,048 image-music
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pairs with alignment of hybrid context information, which is essential for
further research in the area of image-based music retrieval.

– To capture the implicit contexts, we leverage a cross-modal version of Barlow
Twins loss to propose fine-granularity contrastive learning losses for both
inter- and intra-modal scenarios. Experimental results has demonstrated the
effectiveness of our hybrid-granularity design.

2 Related Works

Cross-modal music retrieval methods [6, 30] utilize triplet loss to find items
that close to the anchor queries by distance metrics. With the recent success
of contrastive learning on cross-modal alignment [9, 14, 26, 35], it is naturally
applied to align music modality with another modality (e.g., texts, videos and
images) [7,11,12,21,32]. Intuitively, researchers connect text modality with mu-
sic by learning a multi-modal embeddings [7, 21] to perform text-based music
retrieval task. However, these methods limit the queries to pre-defined tags and
sentences. To retrieve music with more personalized queries, video-based music
retrieval approaches are developed rapidly as the micro-video platforms (e.g.,
Tiktok and Reels) show increasing needs for searching matched background mu-
sic for micro-videos. And several methods(e.g., [17,22,32,33] put efforts to learn
an effective embedding space by leveraging extra information (e.g., optical flow
and text) to perform music retrieval. There is a recent method [28] pioneer
Control-MVR, which integrates both paradigms via semi-supervised contrastive
and dynamically balance audiovisual alignment and genre-specific semantics dur-
ing inference. More recently, several methods [5,8,23] attempt to integrate Large
Language Models (LLM) into the frameworks, which involves interactive chat
to further refine users’ queries and preferences. However, these video-based ap-
proaches are not practical for many music websites (e.g., SoundCloud). Further-
more, it can be simplified to music retrieval based on single key frame, as the
mirco-videos usually show consecutive frames of one similar scene.

In contrast, image-based music retrieval approaches are more straight-forward
and practical since the images express more accurate and complex contexts than
tags, and they are more effective than micro-videos on key context deliverance.
With such advantages, Nakatsuka et al. [24] learn a joint embedding space to
align images and music based on the music genres and their cover art. Stew-
art et al. [27] further propose to align images and music on emotion labels.
However, these methods only perform image-based music retrieval as classifica-
tion task (aka coarse-granularity retrieval) but not contexts alignment (aka fine-
granularity retrieval). To address this problem, we propose a hybrid-granularity
image-based music retrieval framework which takes both coarse-granularity re-
trieval and fine-granularity retrieval into account.

Large Language Models (LLMs) and diffusion models have advanced content
generation across modalities. For example, liu et al. [19] leverages latent diffu-
sion models for open-ended visual storytelling, demonstrating LLMs’ capability
to generate narrative text from images. However, such generative approaches
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prioritize creative content synthesis over precise cross-modal alignment required
for retrieval tasks. Wang et al. [29] highlight challenges in AI-generated content
(e.g., hallucination, consistency), underscoring the need for retrieval systems to
complement generative paradigms.
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Fig. 3: The overview framework of HG-CLIM. The proposed loss term
LHG−CLIM is constructed with two losses: coarse-granularity Lcoarse and fine-
granularity Lfine, which compute contrastive loss along the batch(ui, um) and
feature dimensions(zi, zm), respectively. ui and um are the normalized vectors
along with the batch dimension, and zi and zm are the normalized vectors along
with the feature dimension. The sim() function computes cosine similarity which
is employed by inter-modal loss and intra-modal loss.

3 Methodology

3.1 The MIPNet Dataset

To the best of our knowledge, there is no existing dataset that considers align-
ment of music and images on context information. Thus we construct a Music-
Image Pairing from Nets Dataset, termed MIPNet. The MIPNet dataset con-
sisting of 66,048 image-music pairs, which contains music clips (10 seconds per
clip), images, and their emotional labels (in text format). There are seven emo-
tion labels for both modalities: "Exciting", "Funny", "Happy", "Tender", "Sad",
"Angry", "Scary" as [10]. The image-music pairs are collected by downloading
music clips and thumbnails of music videos from online Social Media platforms
Youtube 6 and Bilibili 7, and the emotion labels are pre-annotated by a LLM
6 https://www.youtube.com/
7 https://www.bilibili.com/

https://www.youtube.com/
https://www.bilibili.com/
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(e.g.,Qwen-VL [1]) and refined by human annotations. In addition, the music
clips and images are carefully paired which considers implicit context connec-
tions. For example, the images presenting story moments in films are paired
with their background music clips, and the images presenting happy moments
of couples are paired with music clips containing slow beats with chorus of male
and female vocals with happy emotion. The images in the dataset are saved in
JPG format, while the music clips are saved with a sampling rate of 32kHz in
WAV format. The dataset is randomly split into train, valid, and test subsets in
an 8:1:1 ratio.

To reduce the noise in image domain, several filtering methods are applied,
for example, duplication removal (based on MD5 hashes and CNN-based model
[13]), quality filtering (CNN-based model [18] and human judgement for image
quality assessment), textual filtering in images (crop out textual contents), and
ratio filtering that filters out abnormal aspect ratio (e.g., greater than 4:1). To
reduce the noise in music domain, we perform filtering based on sound quality.
The audio files are removed if it contains unclear vocals, low quality of music
instruments and concert lives. For the openness of our dataset, we will make the
dataset available through an application process following Creative Commons
Attribution-NonCommercial (CC BY-NC 4.0) license.

Compared to other datasets, our dataset offers more accurate and rigor-
ous image-music matching logic, aligning with our research focus: fine-grained
one-to-one image-music matching. The advantages of our dataset lie in its fine-
grained alignment between image and music modalities across multiple levels,
coupled with its substantial scale. For further details, please refer to the table
below:

Table 1: Comparison of Different Datasets

Emotion
Match

Scene
Match

Rhythm
Match

Style
Match

Key
Segment

Over
50k

MIPNet ✓ ✓ ✓ ✓ ✓ ✓

EMO ✓ × × × × ×
MCA [24] × ✓ × ✓ × ✓

IMSA [31] ✓ × × × × ✓

3.2 The Proposed HG-CLIM Framework

As shown in Figure 3, the HG-CLIM framework consists of three main com-
ponents: encoders for feature extraction, projectors for feature projection into a
joint embedding space, and the proposed contrastive learning loss term: LHG−CLIM .
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Given an image xi and a music clip xm, HG-CLIM computes an image feature
zi and an music feature zm as follows:

zi = Pi(Ei(xi)); zm = Pm(Em(xm))

Feature Extraction In this work, ConvNext [20] is employed as the image fea-
ture encoder, which is shown with both superior efficiency and effectiveness of im-
age classification on ImageNet [4]. The music encoder utilizes PaSST (Patchout
Spectrogram Transformer) Hear21 model [16], which performs state-of-the-arts
performances of music classification on Audioset [10]. These encoders are capable
of capturing robust and informative representations for cross-modal alignment
due to their effective extraction of global and local patterns for images and
audios.

Projectors for Joint Embedding Space To project extracted features of im-
age and music into a joint embedding space, we employ a projector for one modal-
ity to follow each encoder. Each projector is a multi-layer perception (MLP)
network. To be specific, the image projector consists of two linear layers, each
followed by one BatchNorm and one ReLU activation layer, and one single lin-
ear projector. Similarly, the music projector has the same structure as the image
projector, and their output dimensions are set to 8192, which is crucial for rec-
onciling the substantial differences between the music and image modalities [34].

3.3 Loss terms for Aligning Modalities

In this paper, zi ∈ Rdi and zm ∈ Rdm denote the normalized embedding vec-
tor from image and music projectors, where di and dm denote their dimensions.
And Zi ∈ Rdi×N and Zm ∈ Rdm×N denote the matrix formed by zi and zm in a
training batch, where N is the batch size. Also, ui ∈ RN and um ∈ RN indicate
the normalized embedding vector extracted along with the batch dimension of
Zi and Zm, and ωp indicates the modalities of p, with p ∈ {1, 2}.

Coarse-Granularity Contrastive Learning Loss for Inter-Intra Modal-
ity The coarse-granularity contrastive loss along the batch dimension for cross-
modal is defined as :

Lω1→2

coarse =− 1

N

N∑
k=1

log
sim

(
zkω1

, zkω2

)
λc

∑N
j=1
j ̸=k

sim(zkω1
, zjω2)

(1)

where sim(u,v) = exp(u
⊤v/∥u∥∥v∥

τ ). zkω1
is defined as the k-th embedding vector

of modality ω1. τ is the temperature factor that adjusts the distribution of the
logits. We define intra-modal loss as LIntra

coarse and inter-modal as LInter
coarse. The

coarse-granularity contrastive learning loss is defined as the weighted sum of
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both inter-modal and intra-modal losses:

LIntra
coarse = LI

coarse + λMLM
coarse (2)

LInter
coarse = LI→M

coarse + λM→ILM→I
coarse (3)

Lcoarse = LInter
coarse + αLIntra

coarse (4)

where we set α = 1, λM = 1, and λM→I = 1 empirically.

Fine-granularity Contrastive Learning Loss for Inter-Intra Modality
Inspired by Barlow Twins loss [34], the fine-granularity contrastive learning loss
for cross-modal is formulated as:

Lω1→2

fine =
∑
k

(
1− Cω1→2

k,k

)2

(5)

+λf

∑
k

∑
j ̸=k

(Cω1→2

k,j )2

Lfine = LInter
fine + βLIntra

fine (6)

where λf is introduced as a balance factor, β = 1 empirically, and Cω1→ω2

k,j is the
cross-correlation matrix computed between the embeddings uk

ω1
and uj

ω2
, which

is defined as:

Cω1→2

k,j =
uk
ω1
uj
ω2√(

uk
ω1

)2√(
uj
ω2

)2
(7)

Follow Equation (4), we design two components: the inter-modal loss and
the intra-modal loss, while the fine-granularity contrastive learning loss contains
these two parts.

The proposed HG-CLIM loss is a weighted sum of Equation (4) and Equation
(6), defined as:

LHG−CLIM = Lcoarse + γLfine (8)

where γ denotes the weight factor between two loss terms. The loss term Lcoarse

"unite" embeddings with similar explicit information (e.g., emotions, rhythms
in audios and contents in images) and "separate" embeddings without such in-
formation. The loss term Lfine "unite" embeddings with same implicit contexts
(e.g., vocals in audios and styles in images) and "separate" embeddings with
different contexts.

The theoretical background behind the fine-granularity loss term lies on the
alignment between two normalized vectors sharing a same dimension.
Specifically, in a sharing embedding space, the distance metric for measuring two
vectors is using consine similarity, which calculates the angles between two vec-
tors. However, since the values in vectors contain information on both the scale
and direction, thus the consine similarity only take the coarse-grained direction
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into account but without fine-grained scale information. To address this issue,
the values of each element in the vectors should be considered. In this work,
we firstly normalize every vector into a unit vector, then calculate the cross-
correlation matrix between any two vectors, as the correlation matrix should be
close to the identity matrix when their values in each element are close enough.
In this way, each value in every element of vectors (presenting fine-grained infor-
mation) are taken into account. By leveraging this with coarse-grained informa-
tion on direction, we achieve more accurate alignment than regular contrastive
learning methods.

4 Experiments

4.1 Implementation Details

We use the Adam [15] optimizer with a learning rate of 8 × 10−5 and a weight
decay of 0.1 with 400 training epochs. The dimensions of image features and
music features extracted from their pre-trained encoders [16,20] are fixed to 2048
and 768, respectively, then they are all projected to the same dimension 8192.
During the training procedure, the image encoder and music encoder is frozen,
and the projectors are trained from scratch. To balance the hyperparameters in
Equation (1), (6) and (8), we set temperature-scaling τ = 0.2, λc = 1, λf =
0.0061, γ = 0.01.

4.2 Experimental Results

Since the proposed MIPNet dataset is composed of one-to-one pairs, evaluation
on this dataset is a pair-wise retrieval task. In order to conduct further compar-
isons with other methods, we also apply our method to other type of retrieval
tasks (e.g., emotion-based music retrieval) and assess the generalizability of our
approach.

Table 2: Cross-modal Retrieval performance comparisons between methods on
MIPNet Dataset. I → M and M → I denote image-to-music and music-to-image
retrieval respectively.

Method I → M M → I

MRR R@10 P@1 MRR R@10 P@1

EMO-CLIM 0.0804 0.1592 0.0831 0.0812 0.1633 0.0791
VM-NET 0.3279 0.6463 0.2001 0.3165 0.6258 0.2057
HG-CLIM (ours) 0.5124 0.8080 0.2931 0.5104 0.8082 0.2910

Results on MIPNet Dataset To evaluate the effectiveness of our proposed
method, we conduct cross-modal retrieval tasks on the proposed MIPNet dataset.
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Both image-to-music and music-to-image retrieval tasks are conducted. Inspired
by [24] [27], evaluation metrics including Mean Reciprocal Rank (MRR [3]), Re-
call@10 (R@10), and Precision@1 (P@1) are employed to assess the performance
of the retrieval tasks.

Since there are no previous methods available for direct comparison on the
same task, we selected two models that have demonstrated strong performance
in similar tasks. The EMO-CLIM [27] model matches images and music based
on emotion labels, while VM-NET [11] pairs videos with music. We extracted
the respective feature encoders from these models and reconstructed their loss
functions to align with the task of pair-wise matching. We then train all three
models: EMO-CLIM, VM-NET, and our method on the MIPNet dataset, and
compare them with same evaluation metrics for fair comparisons. As shown in
Table 2, our model consistently outperforms the others across all metrics.

Table 3: Cross-modal emotion-based music retrieval comparison among MMTS⋆

[30], EMO-CLIM [27] and our method on MIPNet and EMO Dataset. ⋆ denotes
MMTS is text-based music retrieval on emotion labels. MRR, R@10, P@1 rep-
resent the performance metrics for both I→M (left side) and M→I (right side).
Best results are shown in underline.

Dataset Method MRR R@10 P@1

MIPNET
MMTS 0.4575/0.4807 0.6887/0.7123 0.4070/0.4188
EMO-CLIM 0.4619/0.5072 0.8237/0.7986 0.4917/0.4935
HG-CLIM 0.4765/0.5123 0.8215/0.7921 0.5033/0.5094

EMO
MMTS 0.6616/0.6843 0.6013/0.6125 0.3904/0.3988
EMO-CLIM 0.7859/0.7400 0.6533/0.6238 0.4125/0.4234
HG-CLIM 0.8012/0.7485 0.6908/0.6574 0.4577/0.4396

The table compares Top1 retrieval results of three methods (EMO-CLIM,
VM-NET, and HG-CLIM) on bidirectional tasks: Music→Image and Image→Music
retrieval. Our method (HG-CLIM) consistently achieves superior alignment ac-
curacy by capturing both explicit and implicit contexts.
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Fig. 4: Top1 retrieval results of HG-CLIM compared to baselines (EMO-CLIM,
VM-NET) on bidirectional cross-modal retrieval tasks.

Also, as illustrated in Fig 4, the HG-CLIM model successfully aligns the song
"sad boy.wav" with an image depicting a boy bowing his head in tears and accu-
rately pairs the image of a girl holding flowers with the song "Wildflower.wav".
In contrast, baseline methods (e.g., EMO-CLIM and VM-NET) exhibit mis-
matches in emotional or contextual alignment under the same queries. These
results validate HG-CLIM’s capability to capture fine-granularity semantic rela-
tionships (e.g., scene-specific textures and implicit stylistic cues), demonstrating
its superiority in context-aware cross-modal retrieval tasks.

Results on Emotion-aligned Music Retrieval We recognize that the emotion-
based music retrieval task is also a valuable research task. Thus we compare our
method with the EMO-CLIM and the MMTS [30] framework in this context.
Music and images with same emotion labels are regarded as positive pairs, while
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the others are treated as negative pairs. Besides, we identified a dataset designed
for emotion-based matching. Following the EMO dataset construction approach
for AudioSet described in [27], we constructed a dataset and performed compar-
ative experiments, with the results presented in Table 1. Based on this matching
criterion, we conduct experiments and report the same retrieval metrics on Table
3.

The results demonstrate that the proposed method (HG-CLIM) continues to
perform strongly in this context, further validating the generalizability of the
HG-CLIM approach.

4.3 Ablation studies

We conduct in-depth ablation studies to systematically evaluate the effectiveness
of different components in proposed HG-CLIM framework. The experimental
results are shown in Table 4. The baseline method consists of only the coarse-
granularity contrastive learning loss. We apply the fine-granularity loss term to
the intra- and inter-modality repsectively to evaluate its impact on retrieval per-
formance with MRR metric. In Table 4, it is noticeable that the fine-granularity
loss on intra-modal (second row) contributes a slight improvement in task perfor-
mance compared to the baseline. While applied on inter-modal (third row), the
fine-granularity loss contributes significant improvement for model performance.
This demonstrates that the fine-granularity loss enables the model to learn more
robust and informative representations of images and music for retrieval tasks,
which indicates contribution on learning implicit context-alignment information
on MIPNet Dataset.

Table 4: Ablation studies on different losses under MRR(I → M) and
MRR(M → I) metrics. Baseline method is trained only with loss Lcoarse, and
next two following methods are trained with extra losses Lintra

fine , and Linter
fine ,

respectively.

Loss MRR(I → M) MRR(M → I)

Baseline 0.3164 0.2662
Baseline + Lintra

fine 0.3272 0.3196
Baseline + Linter

fine 0.4793 0.4761
Baseline + Lintra

fine + Linter
fine 0.5124 0.5104

5 Conclusion

In this work, we propose HG-CLIM, a novel image-based music retrieval frame-
work, which aims to align images and music on contexts. To address the lack of
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dataset for such purpose, we construct a private dataset MIPNet, which contains
66,048 image-music pairs and their emotion labels. With our proposed hybrid-
granularity contrastive learning loss, HG-CLIM is capable of learning an image-
music joint embedding space, which considers context alignment on both coarse-
granularity and fine-granularity. Experiments on our MIPNet dataset demon-
strate this embedding space is effective for cross-modal music retrieval task. Our
approach shows a promising direction for image-based music retrieval on context
queries. Beyond cross-modal retrieval, our framework’s ability to align implicit
contexts between images and music has broader implications for AI-driven cre-
ative applications. For instance, in AI storytelling, dynamically matching music
to narrative scenes (e.g., pairing suspenseful music with a thriller plot) can en-
hance emotional engagement. Similarly, in AI music generation, retrieval-based
context alignment can guide models to synthesize music that aligns with vi-
sual themes (e.g., generating orchestral scores for fantasy landscapes). Our work
bridges multimodal understanding and generative AI, offering a foundation for
context-aware applications in virtual reality (VR), interactive media, and auto-
mated content creation.
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