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Detail-and-geometry richness is essential to bas-relief modelling. However, existing image-based and
model-based bas-relief modelling techniques commonly suffer from detail monotony or geometry loss.
In this paper, we introduce a new bas-relief modelling framework for detail abundance with visual atten-
tion based mask generation and geometry preservation, which benefits from our two key contributions.
For detail richness, we propose a novel semantic neural network of normal transfer to enrich the texture

styles on bas-reliefs. For geometry preservation, we introduce a normal decomposition scheme based on
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Domain Transfer Recursive Filter (DTRF). Experimental results demonstrate that our approach is advan-
tageous on producing bas-relief modellings with both fine details and geometry preservation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Bas-relief, a special type of sculpture that figures are slightly
emerged from a background, is a bridge between 2D drawings
and 3D sculptures. Bas-relief has received considerable attentions
in recent years since it can be viewed from many different angles
without causing distortion of the figures. Due to this desirable
intrinsic nature, bas-reliefs as an art form has been very popular
since prehistorical time [1]. They are now treated as either a single
piece of artwork or decorations for walls, monuments, furniture,
medals, potteries etc. In recent years, more and more researchers
in Computer Graphics have developed approaches to fulfill the
stylistic design purpose of bas-reliefs. Fig. 1 shows a couple of real
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bas-relief examples designed by artists and digital ones generated
by the framework described in this paper. Please note the fine
details of the bas-relief examples in Fig. 1.

Detail and geometry richness is an essential key to artistic cre-
ations. Missing any of them, the generated bas-relief will be impos-
sible to convey the ideas from the artists. For example, the relief in
the right of Fig. 1, the scaly textures and petal details present real-
istic fish and lotus flowers. The display of complex geometry
shapes and capture of such realistic fish in motion make them
stand out artistically.

In general, digital bas-reliefs come from two types of sources:
2D images and 3D models. Methods based on natural images
have ill-posed problems ([2]3) in nature, and the approaches
based on 3D models mainly focus on designing sophisticated
non-linear depth compression algorithms which typically incur
a high computational cost. Some recent works (e.g.,[4-6]) attempt
to simplify the bas-relief modelling problem by working on the
normal images which contain both pixel-level detailed appear-
ance (2D information) and the normal information of the geome-
try leading to stereoscopic perception (3D look). The bas-reliefs
are modelled in normal image space rather than in object space,
which solves the ill-posed problems that other image-based
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Fig. 1. The upper row shows artistic bas-relief works. The lower row shows our digital bas-relief results. We recommend readers to view the electronic version for details.

approaches suffer and removes the need of sophisticated depth
compression algorithms.

Realistic bas-reliefs should present both detailed appearances
and stereoscopic perception. For detail transfer, existing works
([4,5]) tend to rely on straightforward image processing techniques
like cut-and-paste and decompose-and-compose, which often lead
to imperfect composition results. For example, the cut-and-paste
operation cannot preserve the normals of the target. The
decompose-and-compose [7,8] operation requires larger detail
patches than target patches while it cannot manipulate target sur-
faces or cause scaling issue for textures. For geometry preservation,
existing methods (e.g., [6]) decompose the normal field into a base
layer and a detail layer by directly subtracting the base normal
value from the original normal, which causes unexpected triangle
distortions in the resultant bas-reliefs.

In this paper, we present a novel bas-relief modelling method
which is able to overcome the above-mentioned issues, and pro-
duces bas-reliefs with rich details as well as preserving the geom-
etry intact. Inspired by image style transfer [9], we propose a
semantic neural network of normal transfer which treats detail
transfer as a style transfer problem. The proposed network is cap-
able of transferring the fine details from a source normal image to
the target normals in arbitrary shapes and scales. In addition, to
generate transferred details on desired areas of the normal
images, we adopt a visual attention mechanism [10,11] and use
object parsing [12] to predict the corresponding masks. We
extract rich texture areas and desired target areas from input nor-
mals into masks, then these masks are used in the proposed

semantic normal transfer network to produce the transferred nor-
mals. For geometry preservation, we present a normal decompo-
sition scheme based on Domain Transfer Recursive Filter (DTRF)
to enhance the geometry properties. We adopt the local shaping
and global blending steps from [6] to construct the mesh of a
bas-relief from detail and structure layers obtained by normal
decomposition.

The overview of our framework is shown in Fig. 2. Our digital
bas-relief modelling pipeline which takes 3D models as inputs,
manipulates normal fields and generates diverse visual effects of
texture transfer, structure and detail preservation. The proposed
semantic neural network of normal transfer facilitates the design
and texture transfer of bas-reliefs and makes the generation pro-
cess in an efficient and intelligent way. The main contributions of
this paper are:

« Semantic neural network of normal transfer. Our proposed
semantic neural network of normal transfer learns the texture and
structure representations, and then recombines them to generate a
new normal image which shows the similar texture patterns of the
source normal image and similiar structure surface of the target
normal image. It is capable of taking arbitrary sizes and shapes
of normal images as inputs, and then synthesizing them into a
new texture.

e Geometry preservation without introducing artefacts. By
considering the orientation of vector rotations, our normal decom-
position scheme obtains a structure layer and a detail layer with
continuous and more natural edges and shapes, which contribute
to produce artefacts free bas-relief modellings.
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Fig. 2. The overview of the proposed approach. Our approach contains three stages: normal transfer, normal decomposition and bas-relief modelling. Normal transfer
completes the task that transfers the fine details from source normal to target normal; Normal decomposition creates structure normal and detail normal with enhanced
geometry properties; Bas-relief modelling constructs bas-reliefs from structure and detail normal obtained from normal decomposition.

2. Related work

In the last two decades, generating digital bas-reliefs from 3D
scenes or 2D images has been a thriving subject in computer
graphics. A detailed review work can be found in [13,14], which
classify methods into direct modelling, image-based and shape-
based modelling. Direct modelling involves experts’ laborious
work. Image-based 3D construction inherently has the ill-posed
problem. Most 3D model-based works create bas-relief by either
directly compressing the depth or by working in the gradient
domain, where the final model is obtained by solving a Poisson
equation. Most cases aim to generate a reproducible and manipu-
lable mesh, which can later be used and enhanced with some more
advanced graphical tools. As a result, specific colour and texture of
the relief are usually not considered in these previous research.
Our work is designed to solve this problem by using the learning
scheme to transfer textures from 3D source models to 3D target
models.

The following review work focuses on bas-relief modelling,
style transfer and learning techniques in recent years.

2.1. Bas-relief modelling

2.1.1. 3D model-based methods

By applying feasible constraints on a given 3D shape or scene,
Christian et al. [ 15] propose a novel view-dependent surface repre-
sentation which allows us to cast the optimization as a quadratic
program. Ji et al. [16] propose a highly efficient two-scale bas-
relief modelling method on GPU, in which the input 3D scene is
first rendered into two textures with depth information and nor-
mal information respectively. The depth map is then compressed
to produce a base surface with level-of-depth, and the normal
map is used to extract local details. Finally, the local feature details
are added back to the base surface to produce the final result.
Based on 3D models, Zhang et al. [17] propose a series of
gradient-based algorithms which operates directly on a triangular
mesh and ensures that the mesh topology remains unchanged dur-
ing geometric processing. They also present two types of shape
editing tools that allow the user to interactively modify the bas-
relief and exhibit a desired shape. Given target shapes, viewpoints
and space restrictions, Zhang et al. [18] find a global optimal sur-
face that delivers the desired appearance when observed from
the designated viewpoints, which could guarantee exact depth
bounds of per-vertex. Zhang et al. [19] treat an input object as a
continuous relief depth map and use mesh intersection to paste
the relief on the target object based on empirical mode decompo-
sition in multi-scale levels [20].

In contrast to model-based methods, we start from image nor-
mal operation to make the process conciser and more efficient.

2.1.2. Image-based methods
Generating bas-relief from natural images and photographs are
intuitive. However, we all know that there is an ill-posed problem

to recover 3D shape from a single image, since colour, luminance
and texture in an image could not reflect the geometric attributes
of the objects properly, especially for objects with complex materi-
als. To overcome this problem, some researches are restricted to
some special types of bas-relief from certain images. For example,
Wu et al.[21], Wu et al. [22], and B. Sohn [23] concentrate on bas-
relief modelling from human face photographs. Zhang et al.[19]
pay special attention to model Chinese calligraphy reliefs. Li et al.
[24] aim at restoring brick and stone alike relief from single rubbing
image in a visually plausible manner. Zhang et al. [25] concentrate
on portrait relief modeling. Some researches are based on Shape
From Shading (SFS) which requires human interaction [2,3,26].

Unlike generating bas-relief from natural images, some recent
works start from normal images [27]. Ji et al. [4] present a novel
framework to design bas-relief in normal image space instead of
object space which is capable of producing different styles of
bas-relief and allows intuitive style control. Their method gener-
ates high-quality bas-relief which enables a variety of applications,
such as the cut-and-paste operation and bas-relief modelling on
curved surface. Recently, Ji et al. [5] extend their previous work
with a layer-based editing approach for normal images to generate
more diversified styles of results, and is capable of transferring
details from one region to another. Similar to Ji et al.’s work [16],
Wei et al. [6] decompose image normal of an input 3D model into
a smooth base layer and a detail layer in order to contribute to both
features of structure-preserving and detail-preserving.

Inspired by these works, our method starts from normal images
of 3D meshes, using detail transfer to achieve the detail-enriched
relief model with a relatively conciser operation.

2.2. Detail transfer

With the growing availability of abundant 3D mesh collections,
some research works attempt to transfer textures [28] or details to
geometric shapes.

Mitra et al. [29] propose an unsupervised learning method to
transfer texture information from images of real objects to 3D
models of similar objects by tackling the reconstruction problem
of a set of base texture. Huang et al. [30] present a novel user-
assisted approach to extract a non-parametric appearance model
from a single photograph of a reference object (whose geometric
structure roughly approximates that of the target object). A novel
alignment algorithm is proposed to enable accurate joint recovery
of the geometric detail and reflection. Berkiten et al. [31] propose a
method which transfers details (specifically, displacement maps)
from existing high-quality 3D models to simple shapes. They adopt
metric learning to find a combination of geometric features that
successfully predict detail-map similarities on the source mesh;
then they use the learned feature combination to drive the detail
transfer in texture space.

Compared to those mentioned detail transfer methods, our
work aims to transfer high quality details to arbitrary shapes and
preserves those details for the purpose of bas-relief generation.
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2.3. Image style transfer

Recently, Convolutional Neural Network (CNN) shows its
power as a rich feature provider in visual perception, which
boosts several computer vision research areas such as image clas-
sification [32] and object detection [33]. Inspired by the success
of visual perception using CNN, Gatys et al. [9] initialize an arti-
ficial algorithm for the creation of artistic images, which pos-
sesses the capability of learning and recombining feature
representations of content and style images. Feeding images into
the pre-trained CNN, they presented the semantic structure rep-
resentations of a photo as neural responses of CNN, and referred
to the artistic style of an artwork as its texture representations
via the spatial summary statistic of neural responses. These
high-level representations actually store the learned distribution
of structure details in the content image and texture patterns in
the style image. By manipulating these high-level representations
inside CNN, they are able to generate a new image which pre-
serves the spatial structure details of a photo and artistic style
of an artwork image.

3. Semantic neural normal transfer

A point in a normal image indicates a normal vector, thus spa-
tial structures and texture patterns are actually the orientation dif-
ferences between normal vectors. As far as we know, deep neural
networks [34,32] are capable of learning these structures and pat-
terns from images, which indicates that the orientation differences
of normal vectors can be captured and stored as neural responses
in networks. Based on this, we propose a semantic deep neural net-
work of normal transfer which accomplishes the detail transfer
task by learning and recombining spatial structures and texture
patterns from input normal images. In addition, we adopt Deep
Visual Attention Network (DVA) [10] and LG-LSTM Network [12]
to generate our mask images.

Fig. 3 illustrates the basic procedure of extracting areas for
masks. The DVA network produces human eye attention areas for
the input normal map, and LG-LSTM network generates parsing
segmentations based on object parts (e.g., head, body and legs
etc). Since the attention areas usually lie on heads or faces [10]
which are identity areas with rich details, we utilize this feature
to extract our masks. For example, DVA network produces high-
light area in the elephant normal on its head, while LG-LSTM net-
work generates part segmentations. To target normals, we always
want areas with less details in order to transfer rich details into
these areas, thus we choose segmented areas without attention
areas (i.e., regions exclude head in Fig. 3) which consist of final tar-
get mask areas. To source normals, in constrast, we always want
areas with rich details, thus we choose segmented areas where
highlight areas lie.

Fig. 4 shows the architecture of the proposed semantic neural
network of normal transfer. In this work, the source normal image
provides the texture patterns, the target normal image provides
the spatial structures and the pixel-level binary mask images indi-
cate the regions that are valid for texture transfer. At the beginning
of the optimization process, the target normal image and its corre-
sponding mask, the source normal image and its corresponding
mask are passed into the network and their features are learnt in
the network. Then our network starts from the target normal
image and gradually syntheses it into a new normal result via opti-
mization iterations. This optimization process minimizes the Eucli-
dean distance between texture and structure representations. For
the given source normal image Xy, target normal image X, and
masks mex and my,, the proposed network searches a new stylized
normal image X by minimizing the following loss term:

Neurocomputing xxx (XXXx) XXX
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where the structure loss %y, penalizes the difference of valid
structure representations between X, and X; the texture loss Z .,
penalizes the difference of valid texture representations between
Xeex and X. To encourage the spatial smoothness in the generated
image X, we also add a total variation regularization in our net-
work. o and f denote the weights to balance the structure compo-
nent and texture component of the stylized result X while k and ¢
respectively denote the weights of texture scales and smoothness.

Let the matrix ¢;(-) € R%*™ denotes the vectorized feature
maps representing the neural responses in a layer j where N; is
the number of channels and M; is Height x Width of the corre-
sponding feature maps, and the mask mg, indicates the valid
regions for structure preservation. The structure loss %, is defined
as the mean square error between the two valid feature represen-
tations ¢;(X«r) and ¢;(X) in the masked area:

Lr (R Xar, M) = > Mty - (5 (Xser) — (X)) (3)

Jj€ls

where J; denotes the set of layers in a pre-trained VGG-19 network
[35] in which the structure loss is computed. Gatys et al. [36] have
discovered that the Gram-based correlations of neural responses
can be exploited as the texture representations. Hence, the texture
loss % is denoted as the squared Euclidean distance between the
scaled texture normal representation k - X, and the generated new
normal representation X:

Lrex (5‘\7 K, Xtex, mtex) = ZK + Miex
Jelt

(U (950 - X)) — U (5(R)))? (4)

where J, denotes the set of layers in the pre-trained VGG network in
which the texture loss is computed, y(¢;(-)) = ¢;(-) - ¢;(-)" € RN
is the Gramian Matrix [36], which is used to represent the texture
information.

4. Image-based normal decomposition

Normal decomposition aims to extract a structure layer L; and a
detail layer L; from the original normal field L,. Generally, the
structure layer Ls is achieved by applying a normal filtering to
smooth L,, and L, is obtained by subtracting Ls; from L, [6]. How-
ever, the detail layer actually presents the orientation differences
between normal vectors in structure Ls and L,. Thus we adopt the
idea [5] which takes the orientation into account, and we propose
a normal decomposition scheme based on an edge-preserving
technique Domain Transfer Recursive Filter [37]. Let Pj; and
Pij-1) denote two adjacent points in a normal image I, the result
J(Pgj;) of DTRF in [37] is defined as:

](P~)—lc 1—a%) - I"(Puj) +a*-J*(Py; (5)

i) — KPZ( ) (i) ( (ufl))

k=1
where a = exp(—ﬁ/os) and d =1+ &|[(Pyj) — I(Pij-1))|. o5 and
o, are respectively standard deviation and deviation range. K,
denotes the scaling factor that normalizes J(P;) to a unit vector

and c denotes the channel index (e.g., RGB). To achieve a symmetric
response of Eq. (5), the DTRF filter is applied twice: for a normal



M. Wang, L. Wang, T. Jiang et al.

\ LG-LSTM [

Neurocomputing xxx (Xxxx) Xxx

Fig. 3. The diagram of mask area extraction. The DVA network generates human eye attention area on elephant’s head which is an identity region with richer details than its
other parts, and the LG-LSTM network segments the elephant into various regions based on object parts. Then we choose regions exclude head as our mask. In general, we
choose areas without eye attention for target normals but with highlight regions for source normals. To target normals, we always want areas with less details in order to
transfer rich textures into these areas. To source normals, however, areas with highlight attention are more desired.
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Fig. 4. The overview of our proposed semantic neural normal transfer network. The network takes source/target normal images and their corresponding masks as inputs,
then computes a new generated normal image with transferred details from source normal via an optimization process.

image I, Eq. (5) is performed left-to-right (top-to-bottom) and then
right-to-left (bottom-to-top). To simplify the user-specified param-
eters, we set ¢, to 1.0 which works well in all of our experiments.

Fig. 5 shows one example using our normal decomposition. We
define our normal decomposition filter based on an edge-
preserving technique Domain Transform Recursive Filter (DTRF)
[37] which is capable of working on colour images at arbitrary
scales without the need of resorting to subsampling or quantiza-
tion. We now give the reason why DTRF is better than BF [38] for
normal smoothing. To DTRF, the output of Eq. (5) tends to be
I(Pgy)) itself as increased d leading a“ to zero, thus the value of a
point on edge is preserved well and barely affected by its neigh-
bouring non-edge point. For example, non-edge point P;_;, (white
color) in (b) of Fig. 6 affects edge point P(;;, much less than point
Piji1y (Eq. (5) is applied twice) as its weight a of P;;; 1, tends to
be zero. In contrast, values of points on edges computed by BF
can still be affected by non-edge points (i.e., points in white color

in 5 x 5 window size (c)), and this influence could be enhanced
after a few iterations, especially when the neighbouring points of
an edge point share similar values. For example, in Fig. 7, the edge
of top-right corner in the zoom-in of structure normal (BF) is
almost wiped out and updated into the smiliar color of non-edge
neighbouring points.

Detail enhancement. To demonstrate the effectiveness com-
pared to value subtraction, we compare the detail enhancement
results obtained by Wei et al. [6] and our normal decomposition
in Fig. 8. To achieve detail enhancement effect, we simply enhance
the detail layer via increasing brightness and contrast in Adobe
Photoshop CS6. Note that our detail layer looks much more natural
than the result of Wei et al. [6] in structure surface and boundaries
between edge and surfaces.

Now we analyse the reason why our normal decomposition
achieves more natural bas-relief modellings than Wei et al. [6].
We consider the orientation for the normal subtraction. Each point
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Fig. 5. One example of our normal decomposition results {; = 10,5, = 1.0} and we enhance the detail normal in Photoshop.
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Fig. 6. Demonstration of DTRF and BF in computing values of edge points. The blue
points are assumed as edge points while other points are non-edge points. The
point P is the current point computed by Eq. (5).

in the normal image indicates a normal vector. Thus the normal
differences between two points in base and original normal are
actually orientation differences which should follow the vector
rotation. As the orientations of the corresponding points in base
and original normal field are continuous, the orientations of new
vectors computed have the property of continuity as well. There-
fore, the detail layer containing those orientation differences gives
continuous and reasonable edges and surfaces in image space. Wei
et al. [6] perform normal decomposition on mesh level via a vector
length threshold 0 which follows a certain Gaussian distribution,
then the small triangles with points having shorter vector length
are remained in the detail layer (c.f. the orange rectangle shown
in the bottom-middle of Fig. 8). However, the orientations between
remained neighbour triangles are not continuous which leads to
unexpected triangle distortions and damages the structure surface
in bas-relief modelling results when detail enhancement is applied
(c.f. the red and green rectangles in Fig. 8). Our normal decompo-
sition has no such damage.

5. Bas-relief modelling

In this section, we construct the bas-relief model based on the
decomposed structure normal map L; and detail normal map L.
To generate the surface from decomposed normals, we adopt
the idea from [6] which regards the mesh construction as an opti-
mization problem. During each iteration, we utilize the general-
ized SfG [39] technique to firstly split current mesh into
quadrangular faces according to the normal orientation of L
and Ly, then stitch all the disconnected faces together to form a
complete surface. The entire bas-relief modelling is proceeded
in two steps: local shaping (split) and global blending (stitch)
(shown in Fig. 9).

Let f, denotes the expected output mesh, f, and f, denote the
desired structure and detail, and hy denotes the expected fixed
overall height, then the total energy of bas-relief modelling is
formed as:

E(fo’fs’fmhu’ hf) = ES(fovfs) + ;LﬂEd(.fo’fd) + )“bEf(fov hf) (6)

where E(f,.f.) = |If, —f:|* is the energy function that minimizes
the difference between output faces f, and structure faces f; which
aims to preserve the structure of transferred normal.
E(f,.f4) = If, — fall* aims to preserve the details of transferred nor-

mal. E(f,, hy) = ||hy, — hf||2 is to control the overall fixed height of
relief. /, is the weight to recover the geometry details, and /,, affects
the style of the resulting bas-relief (roundness or flatness), and lar-
ger value of /, means flatter style.

6. Implementation details

In this paper, the normal computation and bas-relief modelling
is implemented using C++ and OpenGL, and the normal transfer is
implemented using Pytorch 1.3.1 with CUDA 10.0. All the experi-
ments are performed on a desktop PC with two 2.10 GHz Intel(R)
Xeon(R) Platinum 8160T CPU, 256 GB RAM and two NVIDIA TITAN

Original Normal

Structure Normal (DTRF)

Structure Normal (BF)

Fig. 7. Structure Normals obtained by DTRF {o; = 4,0, = 0.7} and BF {0 = 3,6, = 0.3}. The zoom-ins of the red rectangle areas indicate that DTRF preserves better edges

than BF in normal smoothing application.
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Fig. 8. Comparison of normal decomposition between Wei et al. [6] and ours. Our normal decomposition {g; = 10, g, = 1.0} extracts details based on normal orientations
and structure surface information as well, while Wei et al. [6] only obtain details which may damage the structure surface when detail enhancement is applied (see the zoom-

ins of the red rectangle areas).

local shaping

global blending updated surface

Fig. 9. The overflow of bas-relief modelling. In the local shaping step, each face (represented with the same colour edges and a normal vector) is projected according to its
transferred normal vector. A vertex may be spit into two or four vertices, which are represented in the same colour. In the global blending step, new vertex positions (marked
as hollow circles) are calculated by minimizing the total energy (Eq. (6)). These vertices are re-organized in originally connected way to form an updated surface. Then, we

repeat the iteration on the updated surface until it is converged.

RTX graphics card. The Adobe Photoshop version used in this work
is Photoshop CS6. A user-friendly GUI is created. We tested our
method on a set of models with detail enhancement, and trans-
ferred texture details to various models in different scales and arbi-
trary shapes which demonstrate capability and effectiveness of
diverse styles.

6.1. Parameters

For mask generation, we use the pretrained models of [10,12]
provided by authors. Since the pretrained model of [12] is only
trained on images with entire animal bodies, the segmented results
for our source normals are not clear as target normals and could be
arbitrary shapes like owl shown in Fig. 2. For normal transfer, our
network has four parameters: {o, 8, g, k} where they respectively
control the structure preservation, texture preservation, texture
scales and smoothness. Specifically, the ratio o/f presents the
emphasis on either reconstructing the structures or the texture

patterns. A larger ratio «/f indicates the structure identity of target
normal in the synthesized result is strongly preserved, and a smal-
ler ratio «/p indicates the texture patterns of source normal are
effectively presented in the synthesized result. For a specific pair
of source and target normals, user can adjust the trade-off between
structure identity and texture patterns to create visually desired
styles. For normal decomposition, our method has one user-
specified parameter ¢; which is the weight of structure
preservation.

For bas-relief modelling, our method has three parameters:
{%a, 4»,hy} where they are the weights of geometry preservation,
flatness and fixed relief height, respectively. The normal image res-
olution for normal transfer and bas-relief modelling is fixed to
700 x 700. To reduce the number of user-specified parameters,
we fix {o = 1e0, § = 1e6,0 = 1e — 3} and place structure layers at
{conv4_2} and texture layers at {convli_1, conv2_1, conv3_1,
conv4_1 and conv5_1} which are default settings([9]) in normal
transfer stage for all experiments.
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(a) Owl transfer on Bunny.

(b) Turtle transfer on Pillow.

Fig. 10. Examples of transfer results based on regular shapes of source and target normal images.

(b) Dragon transfer on Bunny.

Fig. 11. Example of transfer results based on arbitrary shapes of source and target normal images.



M. Wang, L. Wang, T. Jiang et al.

Neurocomputing xXx (XXXx) XXX

(a) Source normal and target normal.

(d) Turtle transfer on Elephant (x = 0.25).

Fig. 12. An example of detail transfer results with multi-scale texture features.

7. Results and analysis
7.1. Detail transfer of bas-relief modelling
One advantage of our proposed method is the detail transfer on

normal field, which is capable of transferring vivid texture patterns
from one normal image to another. Unlike existing cut-and-paste

technology in [4], our approach learns the texture patterns from
target normal images and transfers them onto source normal
images in arbitrary shapes and multiple scales.

7.1.1. Regular shapes
Fig. 10 demonstrates that the proposed method transfers the
partial texture details of Turtle shell onto the round belly shape
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Original Normal Map

o, =1

0 o, =20

o, =30

Fig. 13. Our normal decomposition results with different o, values. The first column is the original normal map as input. Results from the second column show the structure

normals (bottom row) and corresponding detail normals (top row).

Fig. 14. Analysis of parameters /. /4, and hy in Bas-relief modelling. In the left, the images are original normal map, structure normal map and detail normal map enhanced by
Adobe Photoshop in each column. The first row shows that a larger 7, value would enhance the detail preservation in relief result {2, = 0.5, h; = 0.1}. The second row shows
that a larger /, value would produce flatter relief results {4, = 1.5, hy = 0.3}. The bottom row shows that a larger h; value would increase the height of relief results

{’a =2,/ =1.0}.

of Buddha and a rectangle-like shape of Pillow. The parameters are
{k=04,),=2,7,=0.05h =0.5}.

7.1.2. Arbitrary shapes

Besides the regular shape, our method still deals with arbi-
trary shapes as shown in Fig. 11. The texture details of the
Owl and the Dragon are transferred to the body of the Bunny
without any distortion. The parameters are {i, =2,/, = 0.05,
hs =0.5}. The masks of buddha and bunny are extracted in
photoshop.

7.1.3. Multiscales

Our work is able to transfer different scales of details to the
same target model by simply tuning one hyperparameter x for tex-
ture scales during optimization process as shown in Fig. 12. The
parameters {1, = 2,4, = 0.05,h; = 0.5}.
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7.2. Parameter o for normal decomposition

In Fig. 13, we show the influence of parameter ¢ on our normal
decomposition. As can be seen, the structure normal becomes
smoother along with the increase of ¢; which preserves clearer
details in detail normal. Thus, a larger g, value captures more
details while preserving less structure information, and a lower
o value ignores some details while preserving more structure
information. We choose the o, values between 10 and 20 in all
of our experiments.

7.3. Hyperparameters for bas-relief modelling

In Fig. 14, we show how to tune the hyperparameters in our
bas-relief modelling to get desired visual effects. For geometry
preservation, a larger A, preserves surface details more clearly
and even enhances it in an over-compressed case. A larger /, value
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Feline Mesh

Feline Normal Schuller et al
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Wei et a Ours

Fig. 15. Comparison to state-of-the-art methods with detail enhancement on standard thickness.The images in the first column is the original Feline mesh and Feline normal
field, then the bas-relief results on the right columns follow the order: Weyrich et al. [40], Sun et al. [41], Ji et al. [4], Schiiller et al. [15], Wei et al. [6] and ours
{,L, =5 =15h=0.1 } We recommend readers to view the electronic version for more clear details.

Target Normal Source Normal

Target Mask Source Mask

produces a flatter bas-relief while a smaller one generates a round
style of a model. Parameter h; determines the overall height of the
produced bas-reliefs.

7.4. Comparisons to previous literature methods

7.4.1. Comparison to state-of-the-art methods with detail
enhancement

For fair comparison of the bas-relief results, a linear scaling as
post-processing step is adopted from [6], which aims to make sure
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Fig. 16. Comparison on detail transfer between Ji et al. and ours {4, = 5,4, = 0.05,hy = 3}.

the generated bas-reliefs share same height since these
approaches usually do not control their depth exactly. Addition-
ally, we also carefully fine tune the hyper-parameters for each
method and show their best visual appearance under the same
lighting environment and height compression. We compare our
approach with five state-of-the-art bas-relief modelling
methods in a flatten style. All the produced results share some
similarities, and details on Feline model are preserved well, which
are shown in Fig. 15. However, our approach {4, =5,4, =1.5,
hs = 0.1} produces more continuous and obvious edges (c.f. red
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Table 1

Time consumption (seconds). Here shows the time occupation for typical bas-relief results.
Models Stage 1 Stage 2 Stage 3 Total

Normal transfer Normal decomposition Bas-relief modelling

Buddha 110.78 16.36 47.98 175.12
Pillow 110.28 15.88 35.70 161.86
Bunny (Owl) 110.56 16.07 43.83 170.46
Bunny (Dragon) 109.08 16.15 43.86 109.09
Elephant (x=1.0) 109.00 2437 32.58 165.95
Elephant (x=0.5) 109.57 19.58 36.25 165.40
Elephant (x=0.25) 109.39 21.31 36.03 166.73

rectangles) and natural shape surface (c.f. green rectangles) than
others.

7.4.2. Comparison on detail transfer between Ji et al. [4] and our
method

Fig. 16 shows the detail transfer comparison between Ji et al. [4]
and ours. Ji et al. [4] proposed a normal-based model method
which constructed reliefs from normal images as well. However,
their method utilized the cut-and-paste operation on the image
domain to achieve detail transfer results which inevitably covered
the original surface structures and details of target normal images.
Our approach transfers the texture patterns to target normals
while preserving original geometric property. As can be seen in
Fig. 16, our result not only preserves well in the surface structures
but also produces turtle textures spreading along with the detailed
lines and surface of a human hand.

7.5. Time consumption

In general, our approach contains three stages which are normal
transfer, normal decomposition and bas-relief modelling. The nor-
mal maps of 3D input meshes are fed into our semantic neural net-
work in normal transfer stage. This stage generates synthesized
normal images by running on two NVIDIA TITAN RTX graphics
card. Next, we decompose the transferred normal result into struc-
ture normal and detail normal via our normal decomposition oper-
ator. Finally, the bas-relief modelling stage—surfaces are generated
based on the normal images produced by previous stage. For typi-
cal models in this work, we record the time performance of three
stages where stage 2 and 3 are implemented on CPU while stage
1 on GPU. Time cost of experiments in Fig. 10-12 can be found
in Table 1.

7.5.1. Limitation

Our current semantic normal transfer method is a CNN network
which regards the texture transformation as an online optimiza-
tion problem (without any training process). It runs around 110 s
in execution time for two 700 x 700 normal images which is slow
in practice. To speed up the process, we recommend to replace the
optimization process with feed-forward networks which may
achieve real-time performance. The details on feed-forward net-
works can be found in these related works ([42-44]).

8. Conclusion

This paper presents a normal based bas-relief modelling
method. To enrich the detailed features, we develop a semantic
neural network of normal transfer which learns distributions of
texture patterns and structure details from both source and target
normal images respectively. Then a new normal image combining
these distributions is generated by an optimization process. Unlike
previous normal editing methods, our work is capable of learning
the texture patterns from the source normal images and transfer-
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ring them onto the target normal images in arbitrary shapes and
multiple scales. To preserve geometric properties, we present a
normal decomposition scheme which contributes to the genera-
tion of bas-relief results free from artefacts. A number of experi-
mental results show that our method produces reasonable and
pleasant bas-reliefs with enriched details and preserved geometry.
Our future work will focus on speeding up the pipeline as our cur-
rent semantic normal transfer network uses a slow optimization
process. A promising solution is to use feed-forward networks
instead of optimization process, which will save time for texture
transformation.
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